¾ необходимо избегать интерференции между адресными и внутренними системами; решение — выделять отдельную полосу частот для каждого приложения
¾ испускаемые электромагнитные поля могут нарушать прием широковещательных радиотрансляций или других служб в том же частотном диапазоне.
Последняя проблема достаточно серьезна и более подробно рассмотрена далее в пункте 3.2.5. Первые две проблемы приводят к частотному спектру, представленному на рис. 2.
3.2.2 Передача сигнала
Большое разнообразие сетей и условий нагрузки делает очень сложным подсчет уровня напряжения сигнала на радиочастоте в 50/60-герцовых системах.
Практические статистические измерения дают результаты, с каким затуханием передаются сигналы. На Рис. 3 (верхняя кривая) показано в качестве примера затухание напряжения в 300-метровом кабеле как функция частоты: напряжение падает в пределах 20 дБ при частоте 1 МГц, 80 дБ при 20 МГц.
Рисунок 3. Затухание напряжения сигнала и шум в 300-метровом кабеле.
В первом приближении оно может быть подсчитано в следующем порядке:
Тип линии Затухание Радиус использования
1-30 МГц
Адресная область:
Кабель 40-80 дБ 300 м
Надземные линии 40-80 дБ 300 м
Внутренняя область до 80 дБ около 50 м
Когда невозможно достичь необходимого уровня отклика, требуется установка повторителей. Могут также потребоваться шлюзы между линиями обеспечения и внутренними линиями.
3.2.3 Уровень шума и помехи проводимости в сетях низкого напряжения
Уровень шума в линиях определяется для модемов. Рис. 3 (нижняя кривая) демонстрирует пример уровня шума в кабеле обеспечения. Существует три типа помех:
¾ постоянный широкополосный шум (белый шум)
¾ узкополосные «пики» (отдельные частоты)
¾ пульсации (не показаны на рис. 3)
Измерения шума основываются на нескольких факторах: ширина полосы и временная константа измерительного инструмента, пиковое, или квазипиковое, или среднее значение и т.д. Это делает сравнительные измерения сложными. Должен быть соответствующий метод, чтобы стандартизировать измерения, например, в соответствии с CISPR 16 (ширина полосы 9 кГц, пиковое значение). По общему мнению стоит рассматривать диапазон:
¾ широкополосный шум (ширина полосы 100 кГц, пиковое значение): 30-40 дБ, мкВ (по отношению к 9 кГц — отношение частот не известно достаточно хорошо для этого типа шума: от <20 дБ мкВ до <30 дБ мкВ)
¾ Узкополосный шум (до 50-60 дБ мкВ)
Измерения в зданиях показывают уровень шума в тех же пределах. Сравнимые уровни были зарегистрированы и в компьютерных сетях.
3.2.4 Ограничение уровня сигнала во избежание нарушения работы других сетевых устройств.
PLC-системы не должны нарушать работу других устройств, подключенных к той же сети. Защищенность таких устройств против проводимого «шума» в частотном диапазоне от 0,15 до 80 Мгц обеспечивается Общим стандартом EMC. Это намного больше, чем уровень сигнала PLC (см. параграф 5.6 ниже) и опасность такого воздействия исключена.
3.2.5 Ограничение уровня сигнала из-за излучаемых полей.
Напряжение в PLC-системах и токи, циркулирующие в сетях низкого напряжения, порождают электромагнитное излучение, которое может взаимодействовать с радиослужбами, работающими на той же частоте. Фактически, диапазон 1-30 Мгц, включающий в себя соответственно длины волн 300-10 м, занят коротковолновыми широковещательными службами и другими зарезервированными сервисами, такими как сигнализация, полиция и т.д. Конечно же, их функции не должны нарушаться PLС-системами, и это является основной заботой властей и пользователей.
Некоторые особенности электросетей:
¾ каждый проводник излучает электрические и магнитные поля. Когда два проводника с противоположно направленными токами находятся очень близко друг к другу, результирующее поле очень мало, практически пренебрежимо.