¾ Если проводники находятся на некотором расстоянии, некоторое поле образуется вследствие асимметрии между двумя компонентами. Так происходит в случае силовых кабелей 3ф +(N+G) во внешней области, особенно когда N-проводник заземлен. Асимметрия становится еще значительнее в случае надземных линий.
Асимметрия возникает также внутри зданий и комнат вследствие «дикой» конфигурации внутренней проводки, розеток, бытовых приборов и т.д.
Пределы для PLC-сигналов даны на время в двух формах: как ограничения на излучаемые поля или как ограничения на уровень сигнала в сети. Рисунок 4 демонстрирует допустимые пределы для полей, излучаемых PLC-сигналами, определяемые различными национальными властями. Британские требования более жесткие, американские — более мягкие.
Рисунок 4. Ограничения на излучаемые поля в Британии, Германии и США.
Перед установкой новой PLC-системы необходимо определить поле, которое она может породить. Что касается силовых кабелей, в этом случае поля, создаваемые PLC-системой могут быть вычислены. Однако на практике оказывается, что, по сравнению с прямым измерением электрических полей, вычисления дают слишком большие значения. Это можно объяснить тем фактом, что рядом с кабелем мы не можем определить поле в удаленных областях. В зданиях конфигурация проводки настолько сложна, что практически применимы только статистические измерения. В основном дальнейшие статистические исследования и представляются необходимыми. Нас интересуют создающие помехи поля на расстоянии 1,3, максимум 10 м от силовых линий или внутри комнаты.
Чтобы с большей легкостью оценить эти поля, было предложено упрощение — использовать замещающую функцию, названную «коэффициент соединения». Он может быть определен как отношение:
E(f) – Электрическое поле в В/м
kE = ———————————————
U(f) — Напряжение передаваемого сигнала в В
Практически в этом частотном диапазоне легче измерять магнитное поле и преобразовывать результат в электрическое поле путем умножения на сопротивление пустого пространства Zo (377Ω)
E(f) μV/m = H(f) μA/m*Zo или E(f) dBμV = K(f)dB μA/m + 51,5dB
Замечание: Другое предложение заключается в том, чтобы соотнести коэффициент соединения с вводимой мощностью, но этот метод выглядит менее простым при проведении измерений в узле сети.
Рис. 5 иллюстрирует пример измерений коэффициента соединения. Практически существуют огромный разброс значений этого коэффициента, возможно, по причине эффекта резонанса, который делает прогноз полей крайне неточным.
Рисунок 5. Коэффициент соединения для напряжения поблизости от частного дома.
При первом приблизительном рассмотрении, могут быть получены следующие значения коэффициента соединения:
— силовые кабели во внешних областях: от -35 до -55 дБ
— внутренние площади: от -20 до 40 дБ
3.3 Измерение полей.
Что касается узкополосных PLC-систем, было проведено множество измерений полей. Несколько систем, например, входящие в ENEL в некоторых итальянских городах, уже в регулярном использовании в течение некоторого времени или расширяются в данный момент.
Недавно в некоторых странах были проведены или стали рассматриваться на предмет запуска измерения полей, связанные с широкополосными PLC-системами.
Результаты, полученные в ходе этих измерений, привели к следующим заключениям:
¾ удовлетворительная производительность высокоскоростного доступа в Интернет и телефонии
¾ различные нужды/возможности оптимизации; например, путем оптимизации программного обеспечения и модификации использования части частотных полос может быть достигнуто улучшение пропускной способности от 1,8 Мбит/с до 3 Мбит/с.
¾ ограничение сил поля до значения, соответствующего указанному в NB 30, может привести к снижению приемлемой дистанции для «последней мили» примерно вдвое. Ограничение в соответствии с EN 55022, Class B (жилой район), может вести к росту нерентабельности.