¾ Высокая заинтересованность потребителей в предложенных услугах, особенно достаточно высокой скорости передачи данных в Интернет в сочетании с неплохими тарифами. Увеличение конкурентоспособности входит в интересы Европейской Комиссии.
3.4 Модуляция сигнала и кодирование.
Методы модуляции сигналов и кодирование команд, в общем, не рассматриваются как проблемы, но, так как они тесно связаны с нарушениями работы сети, мы коротко рассмотрим их.
Что касается метода модуляции, в связи с передачей различных сигналов и иммунитету к импульсным помехам рассматриваются только широкополосные методы с частотным мультиплексированием. OFDM-модуляция (Orthogonal Frequency Division Multiplexing — Мультиплексирование с разделением по ортогональным частотам), похоже, пользуется наибольшим предпочтением. Она состоит в разделении доступного спектра на большое число подканалов и передаче данных по N из этих каналов с частотами f1,f2,…,fN. Преимущество этого метода состоит в том, что он позволяет избегать каналов, соответствующих запрещенным частотам и, в связи с этим, повысить уровень передаваемого сигнала. Подробнее мы остановимся на OFDM-модуляции, являющейся основой технологии PLC, немного позднее.
Метод кодирования должен выбираться в соответствии с конкретными выполняемыми функциями. Важный пункт, который надо учитывать — это одновременный запуск различных приложений, например, команд и Интернет или телефона. Каждому приложению при этом выделяется определенное количество каналов.
3.5 Руководство по определению уровня сигнала.
Различные факторы, описанные выше, которые должны быть учтены, делают относительно сложной оценку реальных характеристик PLC-системы. Следующий пример может служить руководством, принимая во внимание неуверенность в полученных коэффициентах. Предполагается система с операционной полосой шириной в 1Мгц (2Мбит/c), использование OFDM-модуляции (которая обеспечивает хорошую защиту против шумовых пульсаций) и средние значения учитываемых факторов.
Можно пойти следующим путем:
¾ Уровень широкополосных помех с В = 100 кГц » 35 дБ мкВ
В = 1 МГц ¾ до 45 дБ мкВ
¾ гарантийный резерв – 10дБ
¾ Затухание сигнала в силовом кабеле – 60 дБ
¾ Приложенное напряжение = 45+10+60 = 115 дБ мкВ / 0,56
¾ Коэффициент соединения: -45 дБ
¾ Излучаемое поле: 115 дБ – 45 дБ = 70 дБ ® 30 мВ/м
Другой метод вычислений может базироваться на спектре плотности энергии (СПЭ).
Некоторые замечания:
¾ Уровень сигнала внутри и около точки излучения превышает пределы, установленные в CISPR 22 (максимум 60 дБ)
¾ Излучаемое поле превышает допустимый для Германии и Британии уровень излучаемых полей (максимум вне кабеля 50дБ)
¾ Приведенный выше пример неприемлем. Параметры поля, указанные в NB30, могут быть получены при сигнале, меньшим на 20 дБ. Некоторые производители заявляют, что они могут удовлетворить эти требования. Однако требования CISPR очень жесткие, и вопрос встает остро, если для PLC не будут установлены более щадящие пределы.
3.6 Мультиплексирование с разделением по ортогональным частотам
Технологию OFDM-модуляции рассмотрим на примере стандарта 802.11а.
По сути, OFDM является частным случаем техники передачи данных с использованием множества несущих (MultiCarrier Modulation -- MCM). Главный принцип MCM заключается в том, чтобы разделить основной поток бит на ряд параллельных подпотоков с низкой скоростью передачи и затем использовать их для модуляции нескольких несущих (поднесущих). При этом, вообще говоря, к каждой из поднесущих может быть применена любая техника модуляции. Общая структура MCM-системы представлена на рис. 1.
Традиционный метод разделения полосы пропускания заключается в применении частотных фильтров. Хорошо известным примером этой техники является мультиплексирование с разделением по частотам (Frequency Division Multiplexing -- FDM). На рис. 2 представлены типичные спектральные кривые для трех подканалов FDM. Чтобы избежать межканальной интерференции, спектры подканалов должны быть разделены защитной полосой. Такое требование приводит к неэффективному использованию выделенного частотного диапазона.