Сети FDDI
Страница 2

Многие из своих ключевых свойств FDDI унаследовала от сетей Token Ring (стандарт IEEE 802.5). Прежде всего - это кольцевая топология и маркерный метод доступа к среде. Маркер - специальный сигнал, вращающийся по кольцу. Станция, получившая маркер, может передавать свои данные.

Однако FDDI имеет и ряд принципиальных отличий от Token Ring, делающий ее более скоростным протоколом. Например, изменен алгоритм модуляции данных на физическом уровне. Token Ring использует схему манчестерского кодирования, требующую удвоения полосы передаваемого сигнала относительно передаваемых данных. В FDDI реализован алгоритм кодирования "пять из четырех" - 4В/5В, обеспечивающий передачу четырех информационных бит пятью передаваемыми битами. При передаче 100 Мбит информации в секунду физически в сеть транслируется 125 Мбит/сек, вместо 200 Мбит/сек, что потребовалось бы при использовании манчестерского кодирования.

Оптимизировано и управление доступа к среде (Medium Access Control - VAC). В Token Ring оно основано на побитовой основе, а в FDDI на параллельной обработке группы из четырех или восьми передаваемых битов. Это снижает требования к быстродействию оборудования.

Физически кольцо FDDI образовано волоконно-оптическим кабелем с двумя светопроводящими волокнами. Одно из них образует первичное кольцо (primary ring), является основным и используется для циркуляции маркеров данных. Второе волокно образует вторичное кольцо (secondary ring), является резервным и в нормальном режиме не используется.

Станции, подключенные к сети FDDI, подразделяются на две категории.

Станции класса А имеют физические подключения к первичному и вторичному кольцам (Dual Attached Station - двукратно подключенная станция);

2. Станции класса B имеют подключение только к первичному кольцу (Single Attached Station - однократно подключенная станция) и подключается только через специальные устройства, называемые концентраторами.

Порты сетевых устройств, подключаемых к сети FDDI, классифицируются на 4 категории: А порты, В порты, М порты и S порты. Портом А называется порт, принимающий данные из первичного кольца и передающий их во вторичное кольцо. Порт В - это порт, принимающий данные из вторичного кольца и передающий их в первичное кольцо. М (Master) и S (Slave) порт передают и принимают данные с одного и того же кольца. М порт используется на концентраторе для подключения Single Attached Station через S порт.

Стандарт X3T9.5 имеет ряд ограничений. Общая длина двойного волоконно-оптического кольца - до 100 км. К кольцу можно подключить до 500 станций класса А. Расстояние между узлами при использовании многомодового волоконно-оптического кабеля - до 2 км, а при использовании одномодового кабеля определяется в основном параметрами волокна и приемо-передающего оборудования (может достигать 60 и более км).

Топология.

Применяемые при построении ЛВС механизмы контроля потоков являются топологически зависимыми, что делает невозможным одновременное использование Ethernet IEEE 802.x, FDDI ANSI, Token Ring IEEE 802.6 и прочих в пределах единой среды распространения. Несмотря на тот факт, что Fibre Channel в какой-то мере может напоминать столь привычные нам ЛВС, его механизм контроля потоков никак не связан с топологией среды распространения и базируется на совершенно иных принципах.

Каждый N_порт при подключении к решетке Fibre Channel проходит через процедуру регистрации (log-in) и получает информацию об адресном пространстве и возможностях всех остальных узлов, на основании чего становится ясно, с кем из них он сможет работать и на каких условиях. А так как механизм контроля потоков в Fibre Channel является прерогативой самой решетки, то для узла совершенно неважно, какая топология лежит в ее основе.

Точка-точка

Самая простая схема, основанная на последовательном полнодуплексном соединении двух N_портов с взаимоприемлемыми параметрами физического соединения и одинаковыми классами сервиса. Один из узлов получает адрес 0, а другой — 1.

Страницы: 1 2 3 4 5 6 7 8 9