n DLCI - идентификатор соединения;
n C/R- поле прикладного назначения, не используется протоколом FR и передается по сети прозрачно;
n EA- определяет 2-х, 3-х или 4-х байтовое поле адреса;
n FECN- информирует узел назначения о заторе;
n BECN- информирует узел-источник о заторе;
n DE- идентифицирует кадры, которые могут быть сброшены в случае затора.
Роль идентификатора соединения DLCI:
Каждое соединение PVC имеет 10-битовый идентификатор, включаемый в заголовок кадра FR, называемый DLCI. Это число присваивается порту узла FR. При установке PVC, соединению назначается один уникальный номер DLCI для порта-источника и другой для порта назначения (удаленного порта). DLCI присваиваются только конечным точкам PVC — сеть FR автоматически назначает DLCI внутренним узлам передачи.
Таким образом сфера действия DLCI ограничивается только локальным участком сети, что позволяет сети поддерживать большое число виртуальных каналов. Благодаря этому разные маршрутизаторы в сети могут повторно использовать тот же самый DLCI; это позволяет сети использовать большее число виртуальных каналов. Таблицы перекрестных соединений (Cross-Сonnect Tables), распространяемые между всеми коммутаторами FR в сети, устанавливают соответствие между входящими и исходящими DLCI.
Используя DLCI, DCE направляет данные от DTE через сеть в следующей последовательности:
n FR DTE инкапсулирует пришедший пакет или кадр в FR-кадр. DTE задает корректный DLCI-адрес, который берется из специальной таблицы рандеву (look-up table), в которой определено соответствие между локальным адресом пакета и соответствующим номером DLCI.
n DCEпроверяет целостность кадра, используя контрольную последовательность FCS и в случае обнаружения ошибки сбрасывает кадр.
n DCEищет номер DLCI в таблице перекрестных соединений (Cross-Connect Table) и, в случае если для указанного DLCI не определена связь кадр сбрасывается.
n DCEотправляет кадр к узлу назначения, через выталкивание кадра в порт, специфицированный в таблице перекрестных ссылок.
Эти шаги представляют интерес и будут рассмотрены подробнее в соответствующих разделах.
СКВОЗНАЯ КОММУТАЦИЯ
По сравнению со своим предшественником, X.25, FR имеет значительные преимущества в производительности. Во время разработки X.25 соединения в глобальных сетях создавались по большей части на основе менее надежной аналоговой технологии. Поэтому, чтобы пакеты прибывали к получателю без ошибок и по порядку, X.25 требует от каждого промежуточного узла между отправителем и получателем подтверждения целостности пакета и исправления любой обнаруженной ошибки. Связь с промежуточным хранением замедляет передачу пакетов, так как каждый узел проверяет FCS каждого поступающего пакета и только затем передает его дальше. Таким образом, в сети с каналами низкого качества возникают нерегламентированные непостоянные по величине задержки передаваемых данных. Поэтому невозможно передавать по сетям X.25 чувствительный к задержкам трафик (например оцифрованную речь) с удовлетворительным качеством.
С появлением высоконадежных цифровых каналов такая проверка стала излишней. Поэтому в FR, использование которого подразумевает наличие цифровой инфраструктуры, не включены функции поиска и коррекции ошибок. Коммутаторы FR используют технологию сквозной коммутации, при которой каждый пакет направляется на следующий транзитный узел сразу же по прочтении адресной информации, что исключает неравномерные задержки. Если случается какая-либо ошибка, коммутаторы FR отбраковывают кадры. Функция исправления ошибок возлагается на межконцевой протокол более высокого уровня (например TCP или SPX). При таком подходе накладные расходы по обработке в расчете на кадр снижаются, что значительно повышает пропускную способность и делает ее регламентируемой.
МЕХАНИЗМ УПРАВЛЕНИЯ ПОТОКАМИ.
Технология FR имеет специальный механизм управления потоками, позволяющий обеспечивать более гибкое мультиплексирование разнородного трафика.