Криптографическая защита функционирование ЛВС в реальном режиме времени
Страница 1

Введение.

Развитие вычислительной техники началось довольно давно, а вот истинный прогресс персональных вычислительных машин произошёл сравнительно недавно. Прошло не так много времени, а 86х286 процессор перестал быть актуальным и лишился возможности выполнять даже десятую часть тех вычислений, которые требуются сегодня. Тактовая частота в 2,5 ГГц стала сегодня обычным явлением и удивить такими производительными мощностями тяжело.

Зато объёдинение персональных компьютеров в сеть осталось актуальным. Конечно, совершенствование аппаратного обеспечения и линий связи положительно отразилось на росте скорости передачи данных, технологии объёдинения вычислительных машин в сеть также прогрессировал.

Лишь одно осталось неизменно – необходимость защиты информации от несанкционированного доступа извне, в том числе и в вычислительных сетях.

Для достижения этих целей используется множество методов. Наиболее простым решением стало введение защиты в сетях посредством клиент-серверных и одноранговых архитектур. Однако и они спасовали, когда появилась необходимость защитить сами линии связи от вмешательства или информацию от лиц, не владеющими определённым спектром прав, но всилу определённых условий заполучившие «чужие» пароли на доступ. Перехват информации может проводиться по наводкам ЭДС в кабелях, можно, в крайнем случае, подключится напрямую к кабелю или к ОВЛС с помощью специальной аппаратуры.

Так или иначе, добраться до передаваемой (получаемой) информации при необходимости не составляет большой трудности, особенно для средств разведки. Это, в принципе, не так важно в сетях, где не содержится информация, нуждающаяся в засекречивании. Но ведь есть множество вариантов, когда появляется поистине необходимость защитить информацию от обработки её лицами, которым она не предназначена.

В таких случаях актуальность приобретает криптографическая защита информации и результаты её деятельности. Это наиболее простой и эффективный способ защитить передаваемую информацию от несанкционированного доступа и насчитывает множество методов. Некоторые из них будут рассмотрены далее.

Ещё надо сказать пару слов об обеспечении процесса криптографического шифрования данных в персональных компьютерах широко используется программный комплекс шифрования данных, но наряду с этим существует и аппаратный. Он менее удобный, требует определённых условий для реализации, зато обладает некоторыми преимуществами перед программным, так как не требователен к остальному аппаратному обеспечения ПК и появляется возможность использования физических ключей. Однако на сегодняшний день уже существуют методы использования физических ключей при программном шифровании данных, вставляющихся через порты ПК.

СЕКРЕТНОСТЬ В ISO.

Архитектура секретности сети в двух словах.

Термин " архитектура секретности сети" можно понимать по-разному. Согласно одной из его трактовок, архитектура секретности - это, в основном, терминологические определения и довольно абстрактные рекомендации разработчикам протоколов. Архитектура секретности МОС, ISO 7498-2, является примером такого подхода. Большую часть этого

стандарта занимают руководство по секретности, определение средств и механизмов секретности, и рассмотрение общих угроз в среде сетевых открытых систем.

Только небольшая часть этого документа обеспечивает основу для оценки предлагаемых средств секретности в протоколах ВОС. По существу эта основа состоит из двух таблиц и приложения к ним. Одна таблица обеспечивает рекомендации по тому, какие механизмы секретности могут использоваться для обеспечения конкретных средств секретности. Вторая(и более спорная) таблица определяет, какие средства секретности могут предоставляться протоколами на каждом из семи уровней ЭМВОС. Более того, при рассмотрении контекста, в котором существует ISO 7498-2, то есть других документов, описывающих модель ВОС, оказывается, что ISO 7498-2 - это довольно абстрактный уровень архитектурной спецификации.

Страницы: 1 2 3 4 5 6 7 8 9