Защита информации: цифровая подпись
Страница 3

C = M * B Ka mоd(P)

получатель расшифровывает полученное сообщение

D = ( A Ka ) -Kb mоd(P)

M = C * D mоd(P)

В этой системе открытого шифрования та же степень защиты, что для алгоритма RSA с модулем Nиз 200 знаков, достигается уже при модуле P из 150 знаков. Это позволяет в 5-7 раз увеличить скорость обработки информации. Однако, в таком варианте открытого шифрования нет подтверждения подлинности сообщений.

1.2.3. Подтверждение подлинности отправителя

Для того, чтобы обеспечить при открытом шифровании по модулю простого числа P также и процедуру подтверждения подлинности отправителя Т.ЭльГамаль предложил следующий протокол передачи подписанного сообщения M:

абоненты знают числа A и P;

отправитель генерирует случайное число и хранит его в секрете:

Ka

удовлетворяющее условию:

1< Ka < P

вычисляет и передаёт получателю число B, определяемое последователньостью:

В = A Ka mоd(P)

Для сообщения M (1< M < P):

выбирает случайное число L (1< L < P), удовлетворяющее условию

( L , P - 1 ) = 1

вычисляет число

R = A L mоd(P)

решает относительно S

M = Ka * R + L * S mоd(P)

передаёт подписанное сообщение

[ M, R, S ]

получатель проверяет правильность подписи

A M = ( B R ) * ( R S ) mоd(P)

В этой системе секретным ключом для подписывания сообщений является число X, а открытым ключом для проверки достоверности подписи число B. Процедура проверки подписи служит также и для проверки правильности расшифрования, если сообщения шифруются.

1.3. Алгоритм Шамира

1.3.1. Общее описание

Еще один интересный пример использования возведения в степень по модулю большого простого числа P для открытого шифрования предложил А.Shamir (один из авторов RSA). Как и в системе ЭльГамаля сообщения M представляются целыми числами из интервала 1 < M < P.

1.3.2. Передача сообщений

Передача сообщения происходит следующим образом:

абоненты знают числа P;

абоненты генерируют независимо друг от друга случайные числа:

Ka, Kb

удовлетворяющих условию:

1 < K < P

отправитель вычисляет значение и передаёт получателю:

C = M Ka mоd(P)

получатель вычисляет и передаёт отправителю число B, определяемое последовательностью:

D = C Kb mоd(P)

отправитель аннулирует свой шифр и отправляет полученную последовательность получателю

E=D(X-1) mоd(P) E = D Fa mоd(P)

где:

Fa = Ka -1

получатель расшифровывает полученное сообщение

M = E Fb mоd(P)

где:

Fb = Kb –1

1.3.3. Пример использования

Эта процедура ОШ может быть использована, например, для таких "экзотических" целей как игра в карты по телефону. Действительно, если игрок A желает "сдать" игроку B, скажем, 5 карт из 52 как при игре в покер, он зашифровывает обозначения всех карт и передает их игроку B:

Ca = Ma Ka mоd(P)

где

I=1,2, ,52

Игрок B выбирает из них 5, зашифровывает своим ключом 22 и возвращает игроку А:

Da = Ca Kb mоd(P)

где

I=1,2 .,5

Игрок A снимает с этих 5 карт свой шифр и выдает их игроку B. Игрок B расшифровывает полученные карты:

Ma = Ea Fb mоd (P)

При этом оставшаяся часть колоды C(6) .C(52) теперь находится у игрока B, но он не может раскрыть эти карты, т.к. они зашифрованы на ключе его партнера A. Остальные процедуры игры проделываются аналогично.

1.4. Кpиптосистемы на основе эллиптических уpавнений

Эллиптические кpивые - математический объект, котоpый может опpеделен над любым полем (конечным, действительным, pациональным или комплексным). В кpиптогpафии обычно используются конечные поля. Эллиптическая кpивая есть множество точек (x,y), удовлетвоpяющее следующему уpавнению:

Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13