Поля, используемые в кадре КВК, идентичны полям кадра LMI-процедур - за исключением полей "Вызываемый номер", "Тип сообщения" и "Информационные элементы".
Ретрансляция кадров и речевой трафик
Метод ретрансляции кадров разрабатывался как синхронный метод доставки данных в ISDN (и не только в ISDN). Соответственно, все реализующие этот метод механизмы и качество обслуживания (QoS) определялись для всех видов трафика, кроме речевого. Традиционные сети с пакетной коммутацией, использующие различные способы коммутации пакетов, обычно применяют низкоскоростные каналы связи и не имеют возможности доставки сообщений, чувствительных к задержке. Другими словами, для этих сетей характерна большая часто меняющаяся задержка доставки сообщений.
Известно, что такая задержка обуславливается, с одной стороны, скоростью коммутации в узле связи (УС), а с другой, пропускной способностью магистральной линии связи. Значительное снижение задержки может быть достигнуто за счет применения метода ретрансляции кадров и магистральных линий связи с высокой пропускной способностью. Таким образом, FR-сеть способна "транспортировать" чувствительный к задержкам трафик. Но одно дело - передача трафика данного типа по сети с динамической маршрутизацией, а другое - обеспечение приемлемого качества обслуживания пользователей.
Среди проблем, связанных с передачей речевого трафика, - необходимость обеспечения постоянной скорости такой передачи. Вся информация, которая содержится в оцифрованном по методу импульсно-кодовой модуляции (ИКМ) речевом сигнале, передаваемом со скоростью 64 кбит/с, важна для восстановления исходного речевого сообщения на приемной стороне. Однако разработаны методы, которые дают возможность снизить требования к полосе пропускания оцифрованного речевого сигнала:
компрессия (сжатие). Благодаря ей можно снизить скорость с 64 до 8 кбит/с и менее. Во многих известных мультиплексорах реализованы алгоритмы, позволяющие уменьшить скорость передачи. Нижний предел сжатия речевого сигнала еще не достигнут, исследования в данной области продолжаются. Конечно, при увеличении степени компрессии это начинает сказываться на качестве восстанавливаемого речевого сообщения. Однако человеческое ухо способно уловить и распознать речь, которая была подвергнута очень сильному сжатию;
детектирование шума (подавление речевых пауз). Исследования показывают, что типичная человеческая речь на 60-70% состоит из пауз. Их необходимо детектировать, чтобы исключить передачу шума через сеть и тем самым обеспечить высокую эффективность ее функционирования.
Эти и другие методы могут с успехом использоваться при пакетировании оцифрованных речевых сообщений. В настоящее время проводятся активные работы по их стандартизации и внедрению в различные службы передачи речевого трафика в пакетной форме. Большинство проблем стандартизации связано с "природой" самих сетей с пакетной коммутацией. В первую очередь, это относится к нумерации пакетов, которая необходима для обеспечения гарантированной доставки пакетов в их естественной последовательности. Дело в том, что пакеты могут иметь различные внутрисетевые задержки, обусловленные всевозможными экстремальными ситуациями в сети - отказами линий и узлов связи, перегрузками, блокировками и т. п.
ITU-T принял Рекомендацию G.764, которая определяет механизм сегментирования оцифрованного речевого сигнала и формирования соответствующих пакетов. Однако этот стандарт не решает многих проблем, к которым относятся:
детектирование шума с целью снижения объема входного трафика. Необходимо детализировать процедуры анализа входного речевого трафика, подавления речевых пауз и передачи синхронизирующих последовательностей для определения начала и окончания речевых и "неречевых" последовательностей;
нумерация серий пакетов для обеспечения доставки последних в их естественной последовательности. В случае потери пакета возможно одно из двух решений: а) повторная передача пакета от источника (что резко повышает общесетевую задержку); б) передача адресату "паузы" в том месте последовательности, где должен был находиться утерянный пакет;